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Abstract
A numerical algorithm is developed to examine the transient processes in an
electrolytic cell with blocking electrodes when an external electric field is
switched on and switched off stepwise in time. The algorithm is applicable
for arbitrary mobilities and valence numbers of the ions and for large electric
potentials, but is limited at present to small cell thickness, up to about 20 D
lengths. The ion charge fluxes and the displacement current contributing to the
total current in the cell have been evaluated and analysed. The ion charge
behaviour in the linear approximation regime (low excitation voltage) and
nonlinear regime (high voltage) have been compared. The dependences of the
polarization and diffusion relaxation times on the ion parameters (valence and
mobility), on the cell length and on the external electric potential are studied.

1. Introduction

The problems concerning the conductivity of intrinsic or extrinsic charge carriers, the
frequency response of the material to an external electric field, the charge polarization and
the capacitance of the diffuse double layer in the vicinity of the electrodes have been studied
extensively, both in electrolytes [1–3] and in semiconductors [4, 5]. The transient processes
in an electrode/electrolyte/electrode system, in response to external electric voltage, play
an important role in different experimental electrochemical methods [6, 7]. However, the
interpretation of the experimental results needs a theoretical basis capable of modelling
different systems and conditions. The analysis of the dynamics of the ion charges in
electrolyte, in response to high external voltage, requires a numerical treatment since the
governing equations are nonlinear and do not allow us to obtain analytical solutions in a closed
form. Franceschetti and MacDonald [8] have used the finite-difference approach and the
general equations have been modified with the help of a fitting parameter. In a finite-element
approach [9] the solution is found as a sum of localized functions with coefficients defined by
minimization of one or more integrals. In the present work we have developed a numerical
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Figure 1. Electrolytic cell with blocking electrodes.

algorithm in which the nonlinearity terms are approximated by a small, one-time-step shift of
one of the variables. The purpose of the present numerical analysis is to examine the transient
ion fluxes and the total current in the cell, driven by a step voltage. The comparison of the
transient processes in the linear regime at low excitation voltage with the nonlinear behaviour
at high voltages is also interesting. We want to know also how the transients are influenced by
the characteristic parameters of the solution, of the external electric field and of the electrolytic
cell.

2. General equations

We shall consider an electrolytic cell comprising two parallel-plate electrodes, isolated by thin
dielectric layers, as shown in figure 1. In this way the electrodes are blocking, i.e. no Faradaic
currents occur through the electrode interfaces. The ion fluxes are due only to migration
currents driven by an external electric field and opposed by diffusion processes. Assuming
that only variations normal to the electrodes are present we can use one-dimensional description
of the system, where X is the coordinate normal to the electrodes of the cell. We shall make
some additional assumptions, which simplify the problem. We consider the solution to be a
strong electrolyte of low concentration, i.e. the dissociation of the ions is complete and the
charge recombinations and the interionic interactions can be neglected.

The general equations describing the transient processes in the electrolytic cell are the
following [10]:

∂n

∂ t
= ∂

∂x

(
Dn

∂n

∂x
+ µnnE

)
(1)

∂p

∂ t
= ∂

∂x

(
Dp

∂p

∂x
− µp pE

)
(2)

∂ E

∂x
= 4πe

ε
(Z p p − Znn). (3)

Here n(x, t) and p(x, t) are the negative and positive ion density distributions varying with
time t , while E(x, t) is the space and time dependence of the electric field. These are the
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three functions to be defined from the set of equations (1)–(3). The diffusion coefficient, the
mobility and the valence of the ions are denoted by Di , µi and Zi correspondingly, where
i = p for the positive ions and i = n for the negative ions. The dielectric constant is denoted
by ε and the protonic charge is given by e.

Another assumption, usually accepted, is the validity of the general Einstein–Nernst
relation [10]:

kT

eZi
µi = Di ; i = n, p. (4)

The positive and negative ion flux densities are defined by the Nernst–Planck equations as
follows:

Jp = Dp
∂p

∂x
− µp pE

Jn = Dn
∂n

∂x
+ µnnE .

(5)

A measurable quantity, deserving evaluation, is the total current comprising the Faradaic flux
components of the two types of ion charges and the displacement current:

I = Z peJp − ZneJn +
ε

4π

∂ E

∂ t
. (6)

Next we shall make all variables dimensionless by using the following normalization
relations:

n∗ = nZn

c0
; p∗ = pZ p

c0
; E∗ =

(
eLD

kT

)
E;

x∗ = x

LD
; t∗ = t

τD
; I ∗ = LD I

kT c0(µn + µp)

(7)

where c0 = Znn0 = Z p p0 is the uniform, unperturbed charge concentration obeying the
overall electroneutrality condition, k is the Boltzmann constant, T is the temperature, LD is
the Debye length and τD is the dielectric relaxation time, defined by the following formulae:

L2
D = εkT

4πe2(Z 2
nn + Z 2

p p)
= εkT

4πe2c0(Zn + Z p)
(8)

τD = ε

4πe(Znnµn + Z p pµp)
= ε

4πec0(µn + µp)
. (9)

In this way the space coordinate is scaled to the Debye length and the time scaling is the
dielectric relaxation time. We denote the electrolytic cell thickness by L and we take the
integration range from x = −L/2 to L/2. Correspondingly, for the dimensionless coordinate
x∗ the cell thickness is 2M and the integration range is from x∗ = −M to M , where M is the
number of Debye lengths in a cell half-length i.e. M = L/2LD. For a highly diluted solution
LD

∼= 10−8 m and if we take the cell length L ∼= 10−3 m we get M ∼= 105.
Taking into account (7)–(9) and substituting (7) into (1)–(3) we obtain the following

dimensionless variant of the general system of equations:

∂n∗

∂ t∗ = πm

1 + πm

(
Zn + Z p

Zn

)
∂

∂x∗

(
∂n∗

∂x∗ + Znn∗E∗
)

(10)

∂p∗

∂ t∗ = 1

1 + πm

(
Zn + Z p

Z p

)
∂

∂x∗

(
∂p∗

∂x∗ − Z p p∗E∗
)

(11)

∂ E∗

∂x∗ = p∗ − n∗

Zn + Z p
(12)
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where

πm = (µn/µp) (13)

is the ratio of the mobility of the negative to the mobility of the positive ions.
It can be noticed that the values of all the dimensionless coefficients appearing in the set

of equations (10)–(12) are of first order of magnitude, while the only high value number for a
real macrosystem is the integration range 2M .

For simplicity of writing, we shall omit further the asterisks in (10)–(12), but we shall
remember that all the variables are dimensionless and are normalized in agreement with (7).

Next we introduce three new variables, which will be useful to decompose each
second order differential equation into a couple of first order differential equations. These
dimensionless variables are the negative ion flux N(x, t), the positive ion flux R(x, t) and the
electric potential Y (x, t), defined as follows:

N = ∂n

∂x
+ ZnnE (14)

R = ∂p

∂x
− Z p pE (15)

E = −∂Y

∂x
. (16)

Taking into account (14)–(16) we obtain from (10)–(12) the following set of six first-order
differential equations:

∂ N

∂x
=

(
1 + πm

πm

) (
Zn

Zn + Z p

)
∂n

∂ t
(17)

∂n

∂x
= N − ZnnE (18)

∂ R

∂x
= (1 + πm)

(
Z p

Zn + Z p

)
∂p

∂ t
(19)

∂p

∂x
= R + Z p pE (20)

∂ E

∂x
= p − n

Zn + Z p
(21)

∂Y

∂x
= −E . (22)

The dimensionless total current can be defined from (6) and (7) as follows:

I = R

1 + πm
− N

1 + π−1
m

+
∂ E

∂ t
. (23)

We assume that the electric potential is switched on infinitely fast at t = 0. Then we have
the following initial conditions for the above system of equations:

n(x, t = 0) = 1; p(x, t = 0) = 1; Y (x, t = 0) = Bx

M
(24)

where B = eY0/kT is the dimensionless electric potential. Immediately after the electric field
is switched on and before the ions are rearranged by migration and diffusion, the potential Y
has a linear dependence over x , as in a dielectric.

Four boundary conditions express the fact that the electrodes are blocking and hence the
ion fluxes N and R are zero at both boundaries:

N(x = −M, t) = N(x = M, t) = R(x = −M, t) = R(x = M, t) = 0. (25)
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Two other boundary conditions show that the external electric potential is kept constant
in time at the two boundaries:

Y (x = −M, t) = −B; Y (x = M, t) = B. (26)

3. Numerical algorithm

Equations (17)–(22) define a set of nonlinear partial differential equations which can be
approached analytically only in the framework of some simplifying assumptions, e.g. a linear
approximation when the electric forces are much smaller than the thermal perturbations, i.e. for
B � 1. In the nonlinear case for large electric voltage, i.e. for B > 1, a numerical treatment is
necessary, which gives us the possibility to analyse a wide variety of parameters and situations.

If we shift the electric field E(x, t) by one time step relative to the charge densities n(x, t)
and p(x, t), then we can linearize the right-hand terms in equations (18) and (20). Thus, the set
of coupled equations (17)–(22) can be decomposed into independent pairs of linear equations
as follows: equations (17) and (18) define n(x, t) and N(x, t), (19) and (20) define p(x, t)
and R(x, t), while (21) and (22) define E(x, t) and Y (x, t). This can be done in two ways.

(1) One way is to take E(x, t − �t) in (18) and (20) as a known function of x , determined in
the previous time step. After having found in this way n(x, t) and p(x, t) we substitute
them in (21) and find E(x, t).

(2) An alternative way is to take n(x, t − �t) and p(x, t − �t) as known functions, found
in the previous time step, and then find E(x, t) in (21). Later, substituting E(x, t) in
(17)–(20) we can find n(x, t) and p(x, t).

Both schemes give similar results, so for convenience we have used the second one. For an
arbitrary function f (x, t) we accept the following rule of discretizing the time and the space:

f (x, t) = f k
i (xi , tk). (27)

If we denote the space step by h and the time step by τ the algorithm can be presented in
a general form as follows:

Ek
i+1 − Ek

i

h
= pk−1

i − nk−1
i

Zn + Z p
(28)

Y k
i+1 − Y k

i

h
= −Ek

i (29)

Nk
i+1 − Nk

i

h
=

(
Zn

Zn + Z p

)
(1 + π−1

m )

(
nk

i − nk−1
i

τ

)
(30)

nk
i+1 − nk

i

h
= Nk

i − Znnk
i Ek

i (31)

Rk
i+1 − Rk

i

h
=

(
Z p

Zn + Z p

)
(1 + πm)

(
pk

i − pk−1
i

τ

)
(32)

pk
i+1 − pk

i

h
= Rk

i + Z p pk
i Ek

i . (33)

An outer iteration loop is used to scan the values over the time steps (indexes k), while
inner loops calculate the space distributions (indexes i ) at a fixed time. The derivatives
in equations (28)–(33) are presented in a general Euler formulation. Actually E and Y in
equations (28) and (29) are integrated by the Simpson rule, while n, N, p and R in equations
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(30)–(33) are calculated by the fourth-order Runge–Kutta method. The boundary conditions
are taken into account with the help of the ‘shooting method’ [11].

Theoretical estimation of the dependence of the stability of the algorithm on the parameters
of the system appeared to be a difficult task, so we have examined the stability empirically. We
have used uniform discretizing meshes in the space and time coordinates and we have obtained
stable results for systems as large as M � 50. A potential improvement of the algorithm can be
obtained if we use, as done in [8], logarithmically changing space steps, smaller in the vicinity
of the electrodes where amplitudes are growing rapidly and larger steps about the centre of the
cell, where the amplitudes are smaller. Analogously, logarithmically decreasing time steps,
larger at the beginning, when the deviations from equilibrium are small, and smaller time steps
at later moments, would improve the performance of the algorithm.

4. Results and discussions

We shall examine firstly the transient processes in the solution when a constant external electric
potential is switched on stepwise in time. We consider a relatively thin cell (M = 6) and
symmetric electrolyte when both types of ions have equal valence numbers Zn = Z p = 1
and equal mobility πm = 1. We shall compare the time–space evolution of the system in two
cases: in the quasi-linear regime when B � 1 and in the nonlinear regime when B > 1.
The obtained positive charge space-distributions p(x, t) for B = 0.1, i.e. linear behaviour, are
presented graphically in figure 2(a) at four consecutive moments in time. The same curves
are shown for B = 4, i.e. nonlinear behaviour in figure 2(b). The negative charge distribution
curves n(x, t) are symmetrical to the curves p(x, t), relative to the cell centre at x = 0, and
will not be shown to avoid overloading of the pictures.

It can be noticed that in the linear regime, for low excitation voltages (figure 2(a)),
the charge density perturbations, adjacent to the two electrodes, are almost identical. The
depletion and the polarization regions are preserved symmetrical in time. In the nonlinear case
(figure 2(b)) the curves have a different character in the two interfacial regions adjacent to the
electrodes. The ion charges in the polarization region i.e. at the electrode of opposite charge
(left-hand side in figure 2(b)) grow high with time, but the resultant electrical double layer
preserves a constant thickness, about one Debye length. The curves obtained when the system,
evolving in time, approaches equilibrium (t = 4 in figures 2(a) and (b)) can be compared with
the nonlinear Poisson–Boltzmann density distribution, which in the notations of the considered
system can be written as follows:

p(x) = exp

(
−4ath

(
th

(
B

4

)
exp(−x)

))

n(x) = exp

(
4ath

(
th

(
B

4

)
exp(−x)

))
.

(34)

The distributions (34) can be obtained when the solution for the potential of the
Poisson–Boltzmann equation is substituted in the Boltzmann charge density distribution [12].
Formulae (34) are valid for all values of the potential B , but are limited only for a static regime,
for a single electrode and for the case of a symmetrical 1-1 electrolyte. The dependences (34)
are presented graphically with dotted lines in figure 3(a) for B = 0.1 and in figure 3(b) for
B = 4. It can be noticed that for weak electrical perturbations (B = 0.1) the theoretical
dotted line curves in figure 3(a) coincide well with the continuous line curves, obtained from
the simulation in a thin cell (M = 6) in figure 2(a) for t = 4. For high electrical potentials
(B = 4) a discrepancy occurs between the theoretical dotted line curves in figure 3(b) and the
continuous line curves for t = 4 in figure 2(b), which is due to the fact that the simulation
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Figure 2. Transient polarizing evolution of positive ion density p(x, t) for symmetrical electrolyte
when Zn = Z p = 1; πm = 1; M = 6. (a) Linear behaviour for B = 0.1. (b) Nonlinear behaviour
for B = 4.

curve is evaluated for a thin cell M = 6, while the theoretical curve is calculated for a single
electrode i.e. M → ∞. In the thin cell the number of ions is preserved constant, while in the
infinitely thick cell the electroneutrality condition is obeyed only for the charges adjacent to
the electrode.

The electrical potential space distributions Y (x, t) are presented in figure 4(a) for B = 0.1
and in figure 4(b) for B = 4, in the same time sequence as in figure 2. There is almost no
difference in the curves in both figures, but a slight tendency can be noticed that the electric
potential is better screened by the ions for the low external potential (figure 4(a)) than for the
high potential (figure 4(b)).

The time evolution of the space distribution of the positive ion flux R(x, t) is shown in
figure 5(a) for B = 0.1 and in figure 5(b) for B = 4. The curves of the negative ion flux
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Figure 3. Positive p(x) and negative n(x) ion density for symmetrical electrolyte when Zn =
Z p = 1; πm = 1; dotted curves—the Poisson–Boltzmann distribution for an infinitely thick cell
M → ∞; continuous curves—simulation for a thin cell, M = 6 and for t = 4 in figure 2. (a)
Linear behaviour for B = 0.1. (b) Nonlinear behaviour for B = 4.

N(x, t) are symmetrical to the curves R(x, t), relative to the cell centre at x = 0, and are not
presented for simplicity. For the linear case presented in figure 5(a) the space distribution of
the ion flux is preserved symmetrical in time. For the nonlinear case in figure 5(b) one can
notice asymmetry of the space distribution of the ion flux varying with time. The flux stays
larger in the polarization region (left side in figure 5(b)) and falls lower in the depletition region
(right side in figure 5(b)). This is in agreement with the higher charge concentration gradients
built next to the electrode of opposite charge as shown in figure 2(b).

We can conclude that in the low voltage approximation the transient processes in the
vicinity of the two electrodes are symmetrical, while in the nonlinear approximation the
transients of the charge carriers are essentially asymmetrical at the two electrodes.
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Figure 4. Time dependence of the electric voltage space distribution Y (x, t) when Zn = Z p = 1;
πm = 1; M = 6. (a) Linear behaviour for B = 0.1. (b) Nonlinear behaviour for B = 4.

The time dependences of the negative and positive ion fluxes N(t) and R(t) for a
symmetrical electrolyte, descending from maximum to zero when an equilibrium is achieved,
are shown in figure 6(a). The dependence on x is eliminated by averaging over the cell length.
We shall denote the specific times of the polarizing negative and positive ion fluxes with TPn

and TP p, correspondingly. As a quantitative measure we choose the time intervals at half
maximum of the curves N(t) and R(t). Obviously for the case when the two types of ions
have the same valence and mobility we have TPn = TPp as shown in figure 6(a).

When the mobility of the negative ions is bigger i.e. πm = 2 the flux amplitude N(t) of
the faster negative ions is bigger and equilibrium is reached for a shorter time i.e. TPn < TPp,
as shown in figure 6(b).

The displacement current was also evaluated numerically, but its amplitude appeared to
be about three orders of magnitude smaller than the charge carrier Faradaic currents and hence
its contribution to the total current is negligible.
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Figure 5. Time dependence of the positive ion flux R(x, t) when Zn = Z p = 1; πm = 1; M = 6.
(a) Linear behaviour for B = 0.1. (b) Nonlinear behaviour for B = 4.

The Faradaic currents of the positive and negative ion charges can be calculated but cannot
be separated experimentally. A measurable quantity is the total current and its evaluation
from (23) is useful. The time dependence of the polarizing total current I (t) is shown in
figure 7(a) in a linear approximation for B = 0.1 and in figure 7(b) in a nonlinear regime for
B = 4. The amplitudes are normalized to the maximum values for better comparison of the
time dependences. The curves in figures 7(a) and (b) are almost identical besides the slightly
smaller values of the relaxation times for B = 4 in comparison with the curves for B = 0.1.

We have also examined the dependence of the polarizing time on the electric potential B
and on the cell length L = 2M . In figure 8 the dependence TP(B) is given for different values
of M . It is shown that the curves TP(B) are almost flat. However, for thinner cells (small
values of M) the curves TP(B) are descending continuously, while for thicker cells (higher
values of M) the curves are almost horizontal with a small jump at higher voltages, i.e. in the
nonlinear region. A numerical analysis carried out by Kahn and Maycock [13] has shown no
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Figure 6. Time dependence of space-averaged positive and negative ion fluxes R(t) and N(t).
(a) Equal ion mobilities πm = 1. (b) Different ion mobilities πm = 2.

dependence of TP on B in the region about M > 10 and B < 2, which is in accordance with
the curves in figure 8. The numerical calculations of the authors in [8] found that ‘the principal
decay constant varies somewhat with B for M = 10 and 20, but not as much as in the M = 1
case’. This observation is also in a qualitative agreement with figure 8.

The dependence of the polarizing time on the cell thickness TP(M) is shown in figure 9
for a constant driving electric potential B = 2. Obviously in a thicker cell the equilibrium is
reached in a larger time interval. However, a saturation tendency can be noticed for higher
values of M .

The transient process of polarizing the electrodes is determined by ion migration, opposed
by ion diffusion. We have found that the polarizing times TP depend on:

• the properties of the ions—ion mobility and ion valence
• the properties of the cell—cell length, measured in Debye lengths
• the strength of the external electric field.
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Figure 7. Time dependence of the polarizing total current I (t) for equal mobilities πm = 1
(continuous curves) and for different mobilities πm = 2 (dotted curves). (a) Linear behaviour for
B = 0.1. (c) Nonlinear behaviour for B = 4.

Figure 8. Dependence of the polarizing relaxation time on the external electric potential TP(B).
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Figure 9. Dependence of the polarizing relaxation time on the cell thickness TP(M).
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Figure 10. (a) Time dependence of the space-averaged positive and negative ion fluxes R(t) and
N(t) for different ion mobilities πm = 2 when the external voltage varies stepwise as shown with
thick continuous lines Y (x = −M, t) and Y (x = M, t). (b) Time dependence of the total current
I (t) for the same conditions as in figure 10(a).



1238 N Tankovsky and E Syrakov

Next we want to analyse the diffusion transient fluxes, when the electric field is switched
off and only diffusion drives the polarized ion charges back to uniform space distribution.
The time dependence of the external electric potential Y (x = −M, t), Y (x = M, t) at both
electrodes is shown with thicker lines, while the transient positive and negative ion fluxes R(t)
and N(t) are shown in figure 10(a) for the case of different ion mobilities (πm = 2). The
time dependence of the corresponding total current I (t) is shown in figure 10(b). The high
pulse observed in figure 10(b) at the moment when the external electric voltage is sharply shut
down is due to the displacement current. We have already found that the displacement current
is negligibly small for the slow time changes of the electric field caused by ion migration,
but when the external voltage is varying fast the displacement current is dominant as seen in
figure 10(b). It can be noticed that the relaxation times of both the diffusion total current and
the polarization total current are a little higher than unity, which is the dielectric relaxation
time, but of the same order of magnitude.

5. Conclusions

A numerical algorithm has been developed to examine the transient processes in a thin
electrolytic cell. It has been shown that in the limit of low excitation voltage (linear
approximation) the ion charge distributions and the ion fluxes are identical at the two electrodes,
while for high voltages (nonlinear regime) the ion charges behave differently in the vicinity
of the two electrodes. The time dependence of the total current in the cell, as well as its
components—the Faradaic currents for the two types of ions and the displacement current,
have been evaluated and analysed. It has been shown that in a thin cell the relaxation times of
polarization and diffusion depend on the properties of the solution, but also on the cell-length
and on the external electric field. Our analysis is restricted to relatively thin cells (M < 20),
but in a future work we hope to develop the algorithm for the limiting case when M → ∞.
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